Cubesats, the tiniest of satellites, are changing the way we explore the solar system
立方体卫星,最小的卫星,正在改变我们探索太阳系的方式

赵彦越    郑州航空工业管理学院
时间:2024-11-23 语向:英-中 类型:航空 字数:872
  • Cubesats, the tiniest of satellites, are changing the way we explore the solar system
    微型立方体卫星:重塑太阳系探索的新纪元
  • Most cubesats weigh less than a bowling ball, and some are small enough to hold in your hand. But the impact these instruments are having on space exploration is gigantic. Cubesats — miniature, agile and cheap satellites — are revolutionizing how scientists study the cosmos.
    大多数立方体卫星的重量比一个保龄球要轻,有的甚至小到可以轻松托在掌中。然而,这些小巧的设备对太空探索产生了巨大的影响。立方体卫星——体积小、灵活性强且成本低廉——正在彻底革新科学家研究宇宙的方法。
  • A standard-size cubesat is tiny, about 4 pounds (roughly 2 kilograms). Some are larger, maybe four times the standard size, but others are no more than a pound.
    标准的立方体卫星体积小巧,重量大约为4磅(约2公斤)。有些立方体卫星的体积可能是标准尺寸的四倍,而另一些则轻巧到不足一磅。
  • As a professor of electrical and computer engineering who works with new space technologies, I can tell you that cubesats are a simpler and far less costly way to reach other worlds.
    作为专注于新兴空间技术的电气与计算机工程教授,我能够证实,立方体卫星提供了一种更简便、经济的途径,用于探索其他星球。
  • Rather than carry many instruments with a vast array of purposes, these Lilliputian-size satellites typically focus on a single, specific scientific goal — whether discovering exoplanets or measuring the size of an asteroid. They are affordable throughout the space community, even to small startup, private companies and university laboratories.
    这些袖珍卫星通常专注于执行单一且具体的科学任务——无论是用于探测系外行星还是测量小行星的尺寸,而不是装备多种多功能仪器。这使得进入航空领域变得更加经济可行,甚至对于小型初创企业、私营公司以及大学实验室来说也是如此。
  • Related: Cubesats: Tiny, versatile spacecraft explained (infographic)
    相关:立方体卫星:揭秘这些小型多用途航天器(信息图)
  • Cubesats’ advantages over larger satellites are significant. Cubesats are cheaper to develop and test. The savings of time and money means more frequent and diverse missions along with less risk. That alone increases the pace of discovery and space exploration.
    立方体卫星相较于传统大型卫星具有明显的优势。其开发和测试成本相对较低,这不仅节省了时间和资金,还使得任务可以更频繁、多样化地开展,并且降低了风险。这一点本身就加速了太空探索和科学发现的进程。
  • Cubesats don’t travel under their own power. Instead, they hitch a ride; they become part of the payload of a larger spacecraft. Stuffed into containers, they’re ejected into space by a spring mechanism attached to their dispensers. Once in space, they power on. Cubesats usually conclude their missions by burning up as they enter the atmosphere after their orbits slowly decay.
    立方体卫星并不独立执行飞行任务。它们通常会搭上便车,成为大型航天器载荷的一部分。这些小型卫星被安置在特制的容器内,通过与分配器相连的弹簧机构被弹射到太空中。进入太空后,立方体卫星便开始工作。在其轨道高度逐渐衰减最终进入大气层烧毁后表示任务完成。
  • Case in point: A team of students at Brown University built a cubesat in under 18 months for less than US$10,000. The satellite, about the size of a loaf of bread and developed to study the growing problem of space debris, was deployed off a SpaceX rocket in May 2022.
    一个具体案例是:布朗大学的学生团队仅用不到18个月的时间便建造了一颗立方体卫星,整个项目的成本不到1万美元。这颗体积与一条面包相当的卫星旨在研究日益严峻的太空垃圾问题,并于2022年5月由太空探索技术公司(SpaceX)的火箭送入太空并成功部署。
  • Sending a satellite into space is nothing new, of course. The Soviet Union launched Sputnik 1 into Earth orbit back in 1957. Today, about 10,000 active satellites are out there, and nearly all are engaged in communications, navigation, military defense, tech development or Earth studies. Only a few — less than 3% — are exploring space.
    将卫星送入太空已非新鲜事。自苏联在1957年发射了人类历史上第一颗人造卫星——人造卫星1号以来,目前大约有10,000颗活跃的卫星在轨运行,主要负责通信、导航、军事防御、技术开发或地球观测等任务。在这些卫星中,只有极少数——不到3%——致力于太空探索。
  • That is now changing. Satellites large and small are rapidly becoming the backbone of space research. These spacecrafts can now travel long distances to study planets and stars, places where human explorations or robot landings are costly, risky or simply impossible with the current technology.
    这种状况正在发生转变。各类大小的卫星正迅速成为太空研究的主力军。这些航天器现在能够进行长距离旅行,去研究那些人类探索或机器着陆成本高昂、风险巨大,或者以当前技术还无法到达的星系。
  • But the cost of building and launching traditional satellites is considerable. NASA’s lunar reconnaissance orbiter, launched in 2009, is roughly the size of a minivan and cost close to $600 million. The Mars Reconnaissance Orbiter, with a wingspan the length of a school bus, cost more than $700 million. The European Space Agency’s solar orbiter, a 4,000-pound (1,800-kilogram) probe designed to study the Sun, cost $1.5 billion. And the Europa Clipper — the length of a basketball court and scheduled to launch in October 2024 to the Jupiter moon Europa — will ultimately cost $5 billion.
    建造和发射传统卫星的成本确实相当高。例如,美国宇航局(NASA)的月球勘测轨道飞行器(LRO)于2009年发射,其大小约等于一辆小型货车,耗资近6亿美元。火星勘测轨道飞行器的成本超过7亿美元。欧洲航天局的太阳轨道器,重达4000磅(约1800公斤)的探测器,旨在研究太阳,其成本高达15亿美元。而欧罗巴快船,计划于2024年10月发射到木星卫星欧罗巴的任务,其长度相当于一个篮球场,预计将耗资50亿美元。
  • These satellites, relatively large and stunningly complex, are vulnerable to potential failures, a not uncommon occurrence. In the blink of an eye, years of work and hundreds of millions of dollars could be lost in space.
    这些卫星往往体积庞大且构造极为复杂,因此潜在的故障点较多,这种情况并不鲜见。一瞬间的失误就可能导致多年的努力和数亿美元的投资在太空中付之东流。
  • Because they are so small, cubesats can be released in large numbers in a single launch, further reducing costs. Deploying them in batches – known as constellations — means multiple devices can make observations of the same phenomena.
    得益于小巧的体积,立方体卫星能够一次性大规模发射,这进一步摊薄了成本。将它们成批部署——这种做法被称为构建“星座”——意味着可以有多个卫星同时观测同一现象。
  • For example, as part of the Artemis 1 mission in November 2022, NASA launched 10 cubesats. The satellites are now trying to detect and map water on the moon. These findings are crucial, not only for the upcoming Artemis missions but to the quest to sustain a permanent human presence on the lunar surface. The cubesats cost $13 million.
    例如,在2022年11月的阿耳忒弥斯1号任务中,美国宇航局共发射了10颗立方体卫星。这些卫星目前正在探测并绘制月球上的水资源分布图。这些研究成果不仅对即将到来的阿耳忒弥斯任务至关重要,而且对于支持人类在月球表面长期探索和居住也具有重要意义。这些立方体卫星的总成本为1300万美元。
  • The MarCO cubesats — two of them — accompanied NASA’s Insight lander to Mars in 2018. They served as a real-time communications relay back to Earth during Insight’s entry, descent and landing on the Martian surface. As a bonus, they captured pictures of the planet with wide-angle cameras. They cost about $20 million.
    2018年,美国宇航局发射了一对名为MarCO的立方体卫星,作为洞察号着陆器任务的一部分前往火星。这两颗小型卫星在洞察号着陆器进入火星大气层、下降和着陆过程中,成功地提供了实时通信中继服务。此外,它们还利用搭载的广角相机拍摄了地球的远距离照片。这两颗立方体卫星的总花费约为2000万美元。
  • Cubesats have also studied nearby stars and exoplanets, which are worlds outside the solar system. In 2017, NASA’s Jet Propulsion Laboratory deployed ASTERIA, a cubesat that observed 55 Cancri e, also known as Janssen, an exoplanet eight times larger than Earth, orbiting a star 41 light years away from us. In reconfirming the existence of that faraway world, ASTERIA became the smallest space instrument ever to detect an exoplanet.
    立方体卫星在探索附近的恒星和系外行星方面发挥着重要作用。2017年,美国宇航局喷气推进实验室部署了ASTERIA立方体卫星,对55 Cancri e进行了观测。55 Cancri e,也被称作Janssen,是一颗体积是地球约8倍的系外行星,围绕一颗距离地球大约41光年的恒星运行。ASTERIA的任务是验证小型卫星在探测系外行星方面的潜力,它成为了有史以来探测系外行星的最小太空仪器。
  • Two more notable cubesat space missions are on the way: HERA, scheduled to launch in October 2024, will deploy the European Space Agency’s first deep-space cubesats to visit the Didymos asteroid system, which orbits between Mars and Jupiter in the asteroid belt.
    目前正在进行的两个引人注目的立方体卫星太空任务包括:欧洲航天局计划于2024年10月发射的HERA任务,这将是其首颗深空立方体卫星,旨在探访位于火星和木星轨道之间的小行星带中的Didymos小行星系统。
  • And the M-Argo satellite, with a launch planned for 2025, will study the shape, mass and surface minerals of a soon-to-be-named asteroid. The size of a suitcase, M-Argo will be the smallest cubesat to perform its own independent mission in interplanetary space.
    M-Argo卫星预计在2025年发射。这个任务旨在研究一颗尚未命名的小行星,包括其形状、质量和表面矿物组成。M-Argo卫星的体积非常小,仅相当于一个手提箱的大小,是星际中执行独立任务的最小立方体卫星。
  • The swift progress and substantial investments already made in cubesat missions could help make humans a multiplanetary species. But that journey will be a long one – and depends on the next generation of scientists to develop this dream.
    立方体卫星任务的快速发展和投资的增加,确实为人类成为多行星物种的梦想提供了可能。然而,实现这一宏伟目标的过程将是漫长的,需要依赖于新一代科学家的持续努力和创新。

400所高校都在用的翻译教学平台

试译宝所属母公司